PHASMID STUDIES

Volume 17, number 1.
April 2008.

Editor: Dr. P.E. Bragg.

Produced by the Phasmid Study Group
The Phasmid Study Group.

The Phasmid Study Group (PSG) was formed in 1980 to foster the study of phasmids. The group currently has several hundred members worldwide. The membership ranges from young children to professional entomologists. The PSG holds regular meetings and presents displays at all the major entomological exhibitions in the U.K. The PSG places emphasis on study by rearing and captive breeding and has a panel of breeders who distribute livestock to other members. The PSG produces two publications which are issued free to members.

The Phasmid Study Group Newsletter is issued quarterly and contains news items, livestock information, details of exhibitions and meetings, and a variety of short articles on all aspects of phasmids.

Phasmid Studies is issued on-line and in print. PSG members wishing to receive printed copies should submit a request to the Membership Secretary; electronic copies may be downloaded from the PSG website. Typically *Phasmid Studies* is produced biannually, in March and September. It contains longer articles on all aspects of phasmids, with an emphasis on natural history, captive breeding, taxonomy, and behavioural studies; in exceptional cases articles on other taxa will be considered. Each issue contains abstracts of phasmid papers from other recent publications. Electronic copies of *Phasmid Studies* are deposited in the following libraries: British Library, U.K.; Hope Library, Oxford University Museum of Natural History, UK; Nottingham University Library, UK.

Phasmid Study Group Website: http://phasmid-study-group.org/

Details of membership may be obtained from the **Treasurer and Membership Secretary, Paul Brock**, 2 Greenways Road, Brockenhurst, Hampshire, SO42 7RN, U.K.
Annual subscription rates are currently: U.K. £12.00; Europe £14.00; Worldwide £15.00.

Phasma.

This is a Dutch-Belgian group with similar aims to the Phasmid Study Group. It produces a quarterly newsletter, *Phasma*, which is published in Dutch. Regular meetings are held in Belgium or the Netherlands.

Details of *Phasma* may be obtained from **Kristien Rabaey**, Nieuwpoortkeiweg 39, B-8630 Veurne, Belgium.
Contributions

1. Articles are welcome from anyone and the editor is prepared to offer advice and help to contributors. The editor would like to encourage people with no previous experience to write articles for *Phasmid Studies*.
2. Articles are reviewed by independent referees before acceptance.
3. Articles are accepted for publication in *Phasmid Studies* on the understanding that they may be translated and reproduced in *Phasma*.
4. Authors will be provided with a pdf file of their paper for distribution.
5. Contributions should be addressed to: Dr. P.E. Bragg, 8 The Lane, Awsworth, Nottinghamshire, NG16 2QP, U.K. or emailed to Pbragg@aol.com with “Phasmid Studies” in the subject box.

Instructions to authors

Articles for publication in *Phasmid Studies* may be submitted in printed form or by email, however if submitted by email authors are advised to contact the editor in advance. Refer to a recent copy of *Phasmid Studies* for layout of articles. In particular the following points should be noted.

1. The title should be followed by the author(s) name and address, an abstract, a list of key words, an introduction (if necessary), the main article, and finally a list of references.
2. The abstract should briefly summarise the article. For short articles one or two sentences should suffice; for longer articles the abstract should not exceed 400 words.
3. A list of key words should be given. These should cover the main topics in the article but there should not be more than 25 key words.
4. All titles and headings should be in bold print and not underlined. The main title and all side-headings should be aligned on the left hand side of the page. If the article is lengthy major headings may be created by using centred headings in bold print.
5. Paragraphs should be indented using a single tab setting (not character spaces).
6. The full stop at the end of sentences should be followed by a double space. Full stops not at the end of a sentence should be followed by a single space.
7. Scientific names should be in italics. On the first usage names should be given in full, followed by the name of the author. On subsequent occasions the genus should be abbreviated to a single letter followed by a full stop, and the author should be omitted.
8. English, not American, spellings should be used throughout.
9. Numbers between one and ten should be spelled out while numerals should be used for 11 and above; the exceptions to this are where measurements are involved, or in descriptions of insects, in both cases numerals may be used throughout.
10. Where measurements are given a space should not be left between numerals and units e.g. 6mm, not 6 mm.
11. References in the text should include the author and date, and page number if appropriate, these should be given in the form Smith (1982: 123), or (Smith, 1982: 123). In the references section, the names of authors and the volume numbers of journals should be printed in bold. Journal titles and book titles should be given in full (not abbreviated) and should be printed in italics.
12. Illustrations must have printed (not handwritten) labels.
13. Drawings should be in black ink and on separate sheets of paper, not with the text of the article. The size of reproduction will usually be determined by the editor. Usually drawings look better when reduced to about half their original size and contributors should bear this in mind. Scale lines must be used, not the magnification of the original drawing.
14. Proofs will be sent to the author to be checked before publication.
15. The abbreviation PSG may be used to refer to the Phasmid Study Group; with this exception, the full titles should be used for all organisations and publications.
16. Electronic submissions should be IBM compatible. Files should be in Word 97-2003, or a compatible format; if written on a non-compatible word processor, the file should be saved as Dos Text or as an ASCII file. Images should be submitted as separate files in Bit Map (BMP) or TIFF or JPEG format.
17. If the word processor used does not have a table facility then tables of measurements etc. should be laid out using tab settings (not character spaces).
Contents

P.E. Bragg

P.E. Bragg

New record of *Hermarchus leytensis* Zompro, with notes on its life history
(Phasmatodea: Phasmatidae).
Marco Gottardo

Notes on *Necroscia affinis* (Gray, 1835), *Necroscia fragilis* (Redtenbacher, 1908) and *Necroscia pallida* (Redtenbacher, 1908).
P.E. Bragg

Notes on *Necroscia haanii* Kirby, 1904 from Borneo, including a new synonym.
P.E. Bragg

Lectotype designation for the type species of *Colossopus, C. grandidieri*
Saussure, 1899 (Orthoptera: Tettigoniidae: Conocephalinae).
M. Ünal & G.W. Beccaloni

Reviews and Abstracts
Phasmid Abstracts
P.E. Bragg, 8 The Lane, Awsworth, Nottinghamshire, NG16 2QP, U.K.

Abstract
James Wood-Mason was a British zoologist who worked in the Indian Museum at Calcutta from 1877 to 1893. He started as an assistant to Professor John Anderson and later succeeded him as Director of the Museum. He made many collections of marine animals and Lepidoptera. He is best known in the entomological world for his work on mantids and phasmids. His life and phasmid work is outlined. He described 24 new species of phasmids and named three new genera.

Key words
Phasmida, Phasmatologist, Biography, Indian Museum, Calcutta, James Wood-Mason.

James Wood-Mason (December 1846- 6th May 1893)
James Wood-Mason was born in Gloucestershire in December 1846. His father was a medical doctor. James attended Charterhouse School and then Queen’s College Oxford where he was a pupil of J.O. Westwood. He was interested in Natural History and Geology and in 1869 he went to India to become Assistant Curator at the Indian Museum in Calcutta. He was a Fellow of the Royal Entomological Society of London and remained a great admirer of Westwood’s work.

Perhaps because he spent most of his adult life in India, it has been difficult to find information about Wood-Mason’s private life. There were two brief anonymous obituaries in British entomological publications when he died (Anon, 1893a, 1893b), and a more detailed mention of his work in an obituary by his successor Alfred Alcock (1893) in the Proceedings of the Asiatic Society of Bengal that was subsequently reproduced in a book about the Indian Museum (Annandale, 1914). One obituary (Anon, 1893b) mentions that he was married and had “several children”. None of the sources give his date of birth, and only one refers to his month of birth (Alcock, 1893). I have been unable to trace a picture of him. He died before celluloid photographic film was invented, so cameras were still rare, particularly outside Europe and the USA, and it is possible that he was never photographed or painted.

Shortly after his arrival in India, Wood-Mason joined the Asiatic Society of Bengal, the leading scientific society in India. He was a regular contributor to the Society’s journal until he became ill toward the end of his life. In 1873 he became the society’s Natural History Secretary and edited the Natural History section of the journal for most of the following 16 years. In 1887 he was elected vice-president of the society. He became Professor of Zoology and Comparative Anatomy in the Medical College of Bengal and in 1888 he was made a Fellow of the University of Calcutta.

In 1808 the Asiatic Society formed the first museum in India. In 1866 the British government turned the Asiatic Society Museum into the Imperial Museum by an Act of Parliament and soon it was renamed the Indian Museum. It moved to new buildings in 1875. The task of re-organising it as a multipurpose museum was entrusted to the Superintendent Dr. John Anderson and his assistant, James Wood-Mason. Having started as Assistant Curator in 1869, he became Deputy Superintendent, and when Dr. John Anderson retired in 1887, he became Superintendent of the Indian Museum, a position he held until his death.

James Wood-Mason became ill with Bright’s disease, a kidney disease which causes back pain, vomiting, fever and oedema. Over a period of several years the effects on Wood-Mason became more severe and incapacitating, and on 5th April 1993, in a critical state of health, he left Calcutta to return to England. On the journey back to England, he died at sea on 6th May 1893 at the age of 47.

Wood-Mason was involved in several explorations. In 1872 he went to the Andaman Islands, working mainly on marine fauna, but he also collected at least two species of phasmids which he described the following year: Bacillus hispidulus and Bacillus westwoodii.
In March 1873 he set out to the Nicobars and other islands in the Bay of Bengal with the famous ornithologist Allan Octavian Hume, and with the geologists Dr. Ferdinand Stoliczka and Dr. Dougall.

Figure 1. *Phyllium westwoodii* Wood-Mason, 1875; plate 17 from Wood-Mason’s original description.
Wood-Mason travelled on Her Majesty’s Indian Marine Survey Steamer Investigator in 1888, and worked on Crustacea in the latter part of his life. He described some new species of Crustaceans collected by the Investigator, some of which were not published until after his death. At least ten marine organisms have been named after Wood-Mason, many posthumously: Bathybembix woodmasoni Smith, 1895, Erugasquilla woodmasoni (Kemp, 1911), Scalpellum woodmasoni Annandale, 1906, Verum woodmasoni (Annandale), Rectopalicus woodmasoni (Alcock, 1900), Heterocarpus woodmasoni Alcock, 1901, Coryphaenoides woodmasoni (Alcock, 1890), Ichnopus woodmasoni (Giles, 1890), Bopyrione woodmasoni (Chopra, 1923), Thalamita woodmasoni Alcock, 1899.

In addition to his work on phasmids, Wood-Mason published at least 20 papers on mantids, one of which also contained work on phasmids (Wood-Mason, 1877b). His last publication on phasmids was in 1879, but he continued publishing work on mantids almost until he died; his catalogue of mantids in the Indian Museum (Wood-Mason, 1889 & 1891) was his last mantis publication. He described at least 60 species and 14 genera of mantids, and created the valid family Eremiaphilidae.

Phasmids of Wood-Mason

Wood-Mason described a total of 24 species and 3 genera of phasmids. Three of the new species that he described were named after J.O. Westwood. The majority of Wood-Mason’s new species were from India and the neighbouring region, but he also described species from Australia (1), New Britain (2), Madagascar (2), Peninsular Malaysia (1) and “Borneo” (in error, actually Fiji). Almost all his species were illustrated until 1876, after 1876 only one paper was illustrated (Wood-Mason, 1877c) and the illustrations were not of new species.

All but three of Wood-Mason’s phasmid publications described new species. Two of his papers (1873b & 1873c) just described the male of what is now known as Cuniculina insignis (Wood-Mason, 1873): he had described the female earlier in the same year. The third publication (1877f) is an announcement of the discovery of stridulating organs in phasmids.

Cotylosoma dipneusticum Wood-Mason, 1878 is an interesting species in several respects. Firstly, the name of this species is credited to Wood-Mason, but he did not formally describe it; secondly, it was for many years reputed to be semi-aquatic; thirdly, it was described with what is probably the least precise measurement ever used for a phasmid; and finally, the locality he gave was completely wrong. Wood-Mason gave it the

Figure 2. *Cotylosoma dipneusticum* Wood-Mason, 1878. Waterhouse’s 1895 illustration of the female.
name but made no more than a brief mention of the insect, and said that it was in the British Museum and came from Borneo.

The actual descriptive content of Wood-Mason’s mention of this species consists of only one full sentence and part of two others: “The insect in question is closely related to the *Prisopide*, “From each side of the body, in fact, along the lower margins of the sides of the metathorax, there stand straight out five equal small but conspicuous ciliated oval plates”, the sentence goes on to speculate about their function as gills, and “The insect, which is a female with rudimentary organs of flight, is between three and four inches in length.” Nowadays such a description would not be valid – the description has to be sufficient to distinguish it from other known species – but for names created prior to 1931 the rules are not as strict so Wood-Mason’s description is acceptable.

Figures 3-5.
Cotylosoma dipneusticum
3 & 4. Male.
5. Female holotype (right side of metathorax).
The specimen was only really described by Waterhouse (1895) – 17 years later – and even that was an illustration (see figure 2, above), not a written description. Waterhouse corrected the locality of the specimen: it is from Taviuni in the Fiji Islands. Waterhouse also cast doubt on the semi-aquatic nature of the insect. The first written description of the female was published by Redtenbacher (1908), thirty years after Wood-Mason’s few words. The male (figs 3 & 4) remained unknown until it was described by Ragge in 1956. Wood-Mason’s original specimen is in the Natural History Museum, London; all other specimens of phasmids described by Wood-Mason were originally in the Indian Museum, Calcutta. Unfortunately, getting information about the collection is difficult and has led to the erroneous assumption that all the type material had been lost. Recently, however, I have been able to confirm that some of Wood-Mason’s original specimens are still present in the museum; work to trace other specimens is ongoing.

Wood-Mason’s last published work on phasmids was in 1879; from 1880 to 1883 he worked almost exclusively on Lepidoptera (Alcock, 1893).

Although no new species of phasmid has ever been named after Wood-Mason, he does have a genus named after him: Woodmasonia Brunner, 1907, with the type species Bacillus oxytenes Wood-Mason, 1873.

Genera of phasmids described by Wood-Mason

Menaka Wood-Mason, 1877e: 342.

Parectatosoma Wood-Mason, 1879:117.

Menaka is considered to be a synonym of *Medaura* Stål, 1875; *Cotylosoma* and *Parectatosoma* are both valid genera. It is interesting to note that Wood-Mason’s valid genera are not from India.

Lists of Wood-Mason’s 24 species grouped alphabetically within each year

1873

furcillatus (Baculum) .. 1873: 54, pl. 5.6 & 5.6a (♀).

fuscolineatus (Bacillus) ... 1873a: 46, pl. 5.7, 5.7a-b (♂).

hispidulus (Bacillus) 1873a: 47, pl. 7.2, 7.2a-c (♂) & 7.3(♀).

insignis (Bacillus (Baculum)) 1873a: 51, pl. 5.1, 5.1a-b (♀) & 5.2 (♀).

laevigatus (Bacillus) .. 1873a: 49, pl. 5.4, 5.4a-c (♀ nymph).

oxytenes (Bacillus) ...1873a: 48, pl. 5.3 & 5.3a (♀).

penthesilea (Bacillus (Baculum)) 1873a: 52, pl. 5.5 & 5.5a (♀).

scabriusculus (Bacillus) 1873: 55, pl. 7.1 & 7.1a (♀).

westwoodii (Bacillus) 1873a: 50, pl. 6.3, 6.3a-b (♀).

1875

austeni (Lonchodes) ... 1875: 261.

westwoodii (Phibalosoma) .. 1875: 216.

westwoodii (Phyllium) ..1875: 218, pl. 17 (♀).

The holotype of *Lonchodes austeni* was illustrated by Wood-Mason, 1977e, pl. 3.4, 3.4a-b (♂).

1876

Lonchodes verrucifer 1876b: 47, pl.11.1-4 (♂) 11.5-6 (♀).
1877

annamallayanum (Phibalosoma) ... 1877d: 161.
franchi (Bacteria) ... 1877b: 74.
godama (Lonchodes) ... 1877d: 162.
menaka (Necroscia) .. 1877a: 130.
novae-britanniae (Phibalosoma) .. 1877b: 75.
novae-britanniae (Phyllium) .. 1877b: 75.
valgus (Lonchodes) .. 1877a: 487.
sinkiebensis (Bacteria) .. 1877e: 343.

1878
dipneusticum (Cotylosoma) .. 1878: 101.

1879
echinus (Parectatosoma) .. 1879: 118.
hystrix (Parectatosoma) .. 1879: 117.

Figure 6. Wood-Mason’s specimen label from the type of Bacillus (Baculum) insignis Wood-Mason, 1873. [Photo – Dr. T. Mukherjee].

Acknowledgements
I am grateful to the RESL librarian for locating the two British obituaries, to Dr Mukherjee (Kolkata) for locating the longer obituary and for providing the photograph of Wood-Mason’s specimen label. I thank Martin Stiewe for information on the mantids described by Wood-Mason, and Judith Marshall for the illustration of Phyllium westwoodii.

References

Phasmid Studies, 17(1): 6

P.E. Bragg, 8 The Lane, Awsworth, Nottinghamshire, NG16 2QP, U.K.

Abstract
Although little of his published work was on phasmids, Robert Shelford’s work is significant because of the large number of Bornean phasmid specimens that he collected for the museums in Sarawak, Oxford and Cambridge. His life and phasmid work is outlined.

Key words
Phasmida, Phasmatologist, Robert Walter Campbell Shelford, Biography, Sarawak Museum.

Robert Walter Campbell Shelford (1872-1912)
Born 3rd August 1872 in Singapore, the son of a prominent British merchant. As a child, after an accident at the age of three, he developed a tubercular hip joint that incapacitated him for several years as a child. He became more mobile after an operation but was never able to participate in active sports as a child, although as an adult he enjoyed playing golf. The tuberculosis recurred in later life, and was the eventual cause of his death at an early age.

Shelford studied at King’s College, London, and then at Emmanuel College, Cambridge. After graduating from Cambridge in 1895 he went to Yorkshire College in Leeds as a demonstrator in Biology. In 1897 he went to Sarawak as the Curator of the Sarawak Museum, a post he held for seven years. While he was at the Sarawak Museum quite a lot of specimens were sent to his old university at Cambridge.

In 1905 he left Sarawak Museum and returned to England. He went to Oxford and became an Assistant Curator of the Hope Department of Zoology at the University Museum. On his way back to England he collected many specimens which he gave to the Hope Collection in Oxford, in addition to “the vast collection of Bornean insects which he had presented [to the Hope Collection] during 1899-1901 while Curator of the Sarawak Museum” (Smith, 1986: 58).

It was at Oxford that he did most of his published research on phasmids. Most of his work at Oxford was on cockroaches, but he also worked on the other insects he had brought back from Borneo, and assisted in the library.

Shelford married Audrey Gurney from Bath on 25th June 1908. In April 1909 he slipped and the tubercular disease flared up and severely limited his work throughout the final three years of his life. Robert Shelford died at the age of 39 on 22nd June 1912.

Shelford’s best-known publication, his book A Naturalist in Borneo (Shelford, 1916), was published several years after his death, having been completed by his Oxford colleague, Edward Poulton. The book was popular when originally published, and was reprinted in paperback by Oxford University Press in 1985.

Species named after Shelford
Shelford has had several Orthopteroid insects named after him. These include one Bornean mantis: Deroplatys shelfordi Kirby, 1903, one Bornean phasmid: Baculofractum shelfordi Bragg, 2005, two genera of cockroaches: Shelfordella Adelung, 1910 and Shelfordina
Hebard, 1929, and 17 species of cockroaches.

Shelford’s phasmsids
The vast majority of phasmid specimens in the Sarawak Museum in Kuching (SMSM) were collected during Shelford’s time as curator, this is probably also the case for the majority of insect groups in the collection. Many of the Bornean specimens in both Oxford (OXUM) and Cambridge (CUMZ) University collections are also specimens collected during Shelford’s time in Sarawak.

In 1901, Shelford briefly described the eggs of some phasmids that he referred to as “Necroscia, Marmessoidea and Agondasoidea”. He also commented that “Phasmidae, notwithstanding their wonderful protective resemblance to sticks and leaves, are the staple form of diet of Trogons” [A family of birds].

In 1908 Shelford produced a catalogue of Central American phasmid species. This was based on Brunner (1907) & Redtenbacher’s (1906 & 1908) publications, but includes some species that they omitted from their work.

Shelford only described five new species of Phasmida, based on work he did in Oxford. All were from South America and the descriptions were published in 1913, shortly after his death. These species are listed below.

Autolyca affinis Shelford, 1913: 61, pl. 3.7 & 3.8.
Autolyca riveti Shelford, 1913: 60, pl. 3.6.
Libethra intermedia Shelford, 1913: 61.
Ocnophila nana Shelford, 1913: 61.
Ocnophila riveti Shelford, 1913: 62.

His book, *A Naturalist in Borneo*, Shelford (1916: 147-155, 215, & 315) includes several references to phasmids. Shelford’s observations of Bornean insects are based on both observation in the wild, and in captivity. He comments on the nocturnal habits of many
phasmids, and refers to his observations on “some that I have kept in captivity”. He then goes on to say that “Most of the winged species of Phasmidae, especially some with brightly coloured wings, are diurnal feeders, or at any rate feed as readily during the day when in captivity as during the night”. He makes several observations about eggs of phasmids in Borneo, and also reveals that he was keeping in England “a small colony of an “Indian Stick-Insect that has bred parthenogenetically for several generations” at the time he was writing his book.

Figure 6. Baculofractum shelfordi Bragg, 2005, holotype & paratype.

Acknowledgement
I thank Dr. A. Chung for providing figure 6, the photograph of Baculofractum shelfordi.

References
Shelford, R. (1908) Family Phasmidae. in Biologia Centrali-Americana, Orthoptera., Vol. 2. [The Phasmidae: 343-377, pl. 5-8.]

Biologia Centrali-Americana is available online at:
http://www.sil.si.edu/digitalcollections/bca/bca_20_02_00/
New record of Hermarchus leytensis Zompro, with notes on its life history (Phasmatodea: Phasmatidae).

Marco Gottardo, Museo Civico di Storia Naturale di Ferrara, Via De Pisis 24, I-44100 Ferrara, Italy. E-mail: m-gottardo@libero.it.

Abstract
The Philippine endemic phasmid Hermarchus leytensis Zompro, 1997 is newly recorded from Mindanao island (Mount Apo). Furthermore, egg, nymphal and adult stages are briefly described along with some notes on the life history of the species in laboratory conditions. The female has an 9-instar developmental cycle, and a high total egg production (2375 eggs). The male is still unknown.

Key words
Phasmida, Phasmatodea, Hermarchus leytensis, morphology, biology, developmental stage, instar, Philippines.

Introduction
The phasmid Hermarchus leytensis was described by Zompro (1997) based upon a single female specimen from Mount Balocaue, in the Philippine island of Leyte. The species has so far never been found after the original description, and represents the only Philippine species currently in the genus Hermarchus Stål, 1875, which is primarily restricted to Melanesia (Hennemann & Conle, 2006). Here H. leytensis is recorded for the first time from southern Mindanao, where populations occur in montane forest habitats. Beyond the examination of preserved specimens, several eggs were obtained from wild captured females by the Cabale family (Bacolod, Philippines), and rearing took place in order to describe some aspects of the reproductive biology of the species.

Eggs were kept on a layer of humid soil; the insects were reared in ventilated cages in the laboratory. The species taxonomy and scientific nomenclature follow Brock (2007). Abbreviations for collections (according to Evenhuis & Samuelson, 2007): MCFS = Museo Civico di Storia Naturale, Ferrara, Italy; MGC = Marco Gottardo personal collection, Rovigo, Italy; MSNG = Museo Civico di Storia Naturale "Giacomo Doria", Genova, Italy.

Hermarchus leytensis Zompro, 1997 (figs 2–4)

Material
7♀♀ and several eggs (MGC), ♀(MCFS), ♀(MSNG) Philippines, Mindanao Island, Mt. Apo, 1300m, 27.iii.2006–10.iv.2006, leg. R. Cabale. ♀ and several eggs (MGC) reared by M. Gottardo, origin Mt. Apo.

Distribution
This species is only known from the Philippine islands of Leyte: Mount Balocaue (Zompro, 1997) and Mindanao: Mount Apo (fig 1).

Egg (fig 2)
Length: 2.6-3.1mm, width: 2.1-2.4mm, height: 2.3-2.8mm. Shape is circular in lateral aspect, and oval in cross-section. The capsule surface is strongly pitted, with numerous irregular shallow impressions delimited by raised ridges. The micropylar plate is longer than wide, lance-shaped. The internal micropylar plate is closed. The operculum is higher than wide, strongly convex, with a prominent and irregular capitulum. The coloration is variable from greyish brown to dark green, with collar and part of capitulum mid-brown.
Figure 1. Distribution of *Hermarchus leytensis*
1 – Mount Balocaue, Leyte island; 2 – Mount Apo, Mindanao island.

Figure 2. Egg of *Hermarchus leytensis*: a – lateral view; b – dorsal view.
New record of *Hermarchus leytensis* Zompro, with notes on its life history

Nymph (fig 3)
The first instar nymph is very slender; body length: 13.5-16.2mm. The general colour is yellowish brown. The dorsal surface of head is green, with two mid brown lateral bands. The legs are covered by weakly developed light brown patches. All following instars differ moderately in chromatic characters from previous instar; the body and legs are usually light green. In the female, most of the nymphaal development is characterized by a slender habitus (fig 3): the mesothorax is parallel-sided, about four times length of pronotum; the abdominal segments II to VII are clearly longer than wide. However, this condition will not be retained in the adult female. From the sixth instar the mesothorax starts to expand laterally, and the body becomes increasingly broad.

Adult (fig 4)
The female is the only sex known (fig 4). This is a broad phasmid, smooth and glossy in appearance; body length: 127.8-147.6mm (including the subgenital plate). The dorsal and lateral surfaces of the body are mainly apple green, while the ventral surface and legs are slightly darker. The head is strongly globose dorsally; the antennae are dark brown, filiform, longer than fore femora. The mesothorax is still four times length of pronotum, but bell-shaped, essentially broadened in the anterior third. The legs are armed with numerous spines. All abdominal segments are now wider than long, and the lateral margins of tergites are slightly projecting perpendicularly. The abdominal sternite VII is only slightly swollen medioposteriorly, lacking a praeopercular organ. The subgenital plate is keeled and acutely pointed, extending beyond abdominal segment X.

Notes on the life history of *Hermarchus leytensis* in laboratory conditions
The duration (in days) of the developmental stages is shown in table 1. Of nine nymphs hatched, only one female was reared to the adult stage. Newly hatched nymphs were active mainly at night, and started to feed about 2-5 days after emergence. At this stage a high mortality rate was observed (about 89%), probably due to the reluctance of the insects to accept an alternative foodplant; also nymphs easily died at temperatures above 30°C. The female has eight nymphaal instars; the development of instars lasted from 13-19 days. The female started oviposition 16 days after the final moult, and remained reproductively active.

Figure 3. The fourth instar female nymph of *Hermarchus leytensis* at rest on a leaf of *Quercus robur*, an alternative foodplant in rearing conditions.
until two days before death; eggs were laid singly, and flicked actively a few metres away from the female. During this period, the female laid a mean of 11.2 eggs per day. However, about 31 days before death a strong decrease in the oviposition rate was observed, with a mean production of six eggs per day: compared with normal eggs, these were smaller, with a larger and broader micropylar plate, and laid mainly with detached opercula. The female produced a total of 2375 eggs during her lifetime.

Figure 4. Adult female of *Hermarchus leytensis*, body length 140.9mm.
No data on foodplants in natural habitats are available. In rearing conditions the species feeds on *Hypericum* spp. (Guttiferae), *Quercus* spp. (Fagaceae), *Psidium guajava* (Myrtaceae) and *Rubus ulmifolius* (Rosaceae).

Defensive behaviour: when disturbed the adult female actively used the spinose hind legs to stab. No secretion has been emitted from the prothoracic exocrine glands.

Table 1. Duration (in days) of egg, nymphal, and adult stages of *Hermarchus leytensis* over one developmental cycle.

<table>
<thead>
<tr>
<th>Stages</th>
<th>Duration (days)</th>
<th>Mean temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>112-140</td>
<td>25.2</td>
</tr>
<tr>
<td>Female, 1st\textsuperscript{-8th} instar nymph</td>
<td>99</td>
<td>25.0</td>
</tr>
<tr>
<td>Female, adult (9th instar)</td>
<td>229</td>
<td>22.5</td>
</tr>
</tbody>
</table>

Concluding remarks
Hennemann & Conle (2006) pointed out that *Hermarchus* Stål, 1875 is restricted to the following Pacific islands: Fiji, Tonga, Vanuatu, New Caledonia, New Hebrides and western French Polynesia. Moreover, these authors accommodated all New Guinean species originally described in *Hermarchus* in the new genus *Macrophasma* Hennemann & Conle, 2006. When Zompro (1997) described *H. leytensis*, he linked it to the New Guinean species *Macrophasma lyratus* (Redtenbacher, 1908). However, the female of *H. leytensis* differs from the diagnosis of *Macrophasma* in some characters of the body and egg morphology. Further affinities will be investigated following the identification of the male of this species.

Acknowledgements
I am very grateful to Frank H. Hennemann for helpful discussions on the systematics within the subfamily Phasmatinae. Thanks also to Oliver Zompro for information on the holotype of *H. leytensis*. The manuscript benefited from the invaluable advice of Phil E. Bragg.

References

Notes on *Necroscia affinis* (Gray, 1835), *Necroscia fragilis* (Redtenbacher, 1908) and *Necroscia pallida* (Redtenbacher, 1908).

P.E. Bragg, 8 The Lane, Awsworth, Nottinghamshire, NG16 2QP, U.K.
Email: pbragg@aol.com

Abstract

Necroscia affinis (Gray, 1835) was originally described from India. The holotype of *affinis* lacks the abdomen and consequently this species cannot be reliably distinguished from several similar species. Lectotypes are selected for *Necroscia pallida* (Redtenbacher, 1908) and *Necroscia fragilis* (Redtenbacher, 1908), and both species are illustrated. *Necroscia pallida* (Redtenbacher, 1908) is reinstated as a valid species. It is proposed that *Necroscia fragilis* (Redtenbacher, 1908) be used for the species that occurs in Peninsular Malaysia and Singapore. A two-legged *N. pallida* is recorded: the first record of a two-legged phasmid found in the wild. The eggs of *N. fragilis* and *N. pallida* both have an exceptionally large pseudocapitulum; both eggs are illustrated.

Key words

Phasmida, *Necroscia affinis*, *Necroscia fragilis*, *Necroscia pallida*, Lectotype, Borneo, Peninsular Malaysia, India.

Introduction

Necroscia affinis (Gray, 1835) was originally described from India. It has since been recorded from Borneo and Peninsular Malaysia, but there are no subsequent records from India. Examination of specimens in several museums has shown that material treated as *affinis* by several authors consists of more than one species. The only type specimen of *affinis* is the holotype male in the Natural History Museum, London (BMNH); it lacks the abdomen, and is therefore indistinguishable from several similar species of *Necroscia*.

Although Brock (1999: 96) speculates that the locality for *affinis* is “likely to be Malaysia” there is no valid reason to assume this to be the case. In 1835 Gray described three species from “India Orientali” [East Indies] and two are almost certainly from Malaysia; however, *affinis* was described from “India”, not India Orientali. Gray also described material from Ceylon (Sri Lanka) so it is quite possible that some material did come from India.

Necroscia affinis was recorded from Borneo and Peninsular Malaysia by Redtenbacher (1908: 525). In 1935 Günther synonymised the Bornean species *Necroscia pallida* (Redtenbacher, 1908) with *affinis* (Gray, 1835). However, Borneo could not be the origin of the specimen that Gray described in 1835 because there was no British presence in Borneo until the arrival of James Brooke in 1838.

The specimens of “*Necroscia affinis*” from Borneo and from Peninsular Malaysia are different species. The species from Peninsular Malaysia and Singapore, treated as *affinis* by Brock (1999) & Seow-Choen (2000), is identical to *Necroscia fragilis* (Redtenbacher, 1908). With Gray specifying India, rather than the East Indies, and the current impossibility of distinguishing *affinis* (Gray), I propose that *fragilis* (Redtenbacher) be used for the Peninsular Malaysian species.

The Bornean specimens in Berlin (ZMHB) and Vienna (NHMW) that Redtenbacher (1908: 525) recorded as *affinis* are the same species as *Necroscia pallida* (Redtenbacher, 1908). The Bornean *Necroscia pallida* is clearly different from the Peninsular Malaysian *N. fragilis*. *Necroscia pallida* is therefore reinstated as a valid species, and a lectotype is selected.

Although *fragilis* and *pallida* have a very similar habitus they may be distinguished by the features given in table 1.

Specimens in my own collection are individually numbered and prefixed by PEB-. For the examined material, handwritten data is shown in italics and printed data in normal print.
Table 1. Features to distinguish *N. fragilis* and *N. pallida*.

<table>
<thead>
<tr>
<th></th>
<th>fragilis</th>
<th>pallida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hind legs of female</td>
<td>Exceed the abdominal apex.</td>
<td>Not reaching the abdominal apex.</td>
</tr>
<tr>
<td>Shape of cerci (both sexes)</td>
<td>Slightly clubbed, rounded apex.</td>
<td>Slender, taper to a point.</td>
</tr>
<tr>
<td>Relative lengths of abdominal terga in male.</td>
<td>8th & 9th of similar length.</td>
<td>9th longer than 8th.</td>
</tr>
<tr>
<td>Pseudocapitulum of egg</td>
<td>Convex.</td>
<td>Flat.</td>
</tr>
</tbody>
</table>

Necroscia affinis (Gray, 1835) (fig 1).
Platycrana affinis Gray, 1835: 37. Holotype ♂ (BMNH) India.
Necroscia affinis (Gray); Westwood, 1859: 142.
Aruanoidea affinis (Gray); Kirby, 1904: 379.

The three references above all relate to the holotype. All other references to *affinis* relate to *Necroscia fragilis*, *Necroscia pallida*, or other species of *Necroscia*; none are of Indian origin.

Figure 1. *Necroscia affinis* (Gray, 1835), holotype male.
Necroscia fragilis (Redtenbacher, 1908) (figs 2-11).

Aruanoidea fragilis Redtenbacher, 1908: 528; Brock, 1998: 30. Lectotype: ♂ (NHMW, data below), Paralectotype ♂ (NHMW, data below). [Synonymised with Necroscia affinis (Gray) by Brock, 1996: 90.]

Material examined

♂ (P.D. Brock) W. Malaysia: Cameron Highlands, 12.i.1992, via Wong; Necroscia affinis (Gray).

Figures 2-5. Male Necroscia fragilis (Redtenbacher, 1908).

2. Lateral view of abdomen. 3. dorsal view of abdomen. 4. ventral view of abdomen. 5. dorsal view of head and pronotum.
Notes on *Necroscia affinis*, *Necroscia fragilis*, and *Necroscia pallida*

I borrowed Paul Brock’s male specimen and took it to NHMW to compare it with the type material of *fragilis*. Illustrations included here are of Brock’s male (figs 2-5), and my own female and egg (figs 6-11).

Because I was concentrating on Bornean material, I omitted to examine the holotype of *Aruanoidea confusa* Redtenbacher. However, it is likely that Brock was correct to associate it with *fragilis* (Brock synonymised *fragilis* and *confusa* under the name *affinis*). I also failed to check Redtenbacher’s specimen(s) of “*affinis*” from Perak (Redtenbacher, 1908: 525); this material is also likely to be *fragilis*.

![Figures 6-8. Abdomen of female *Necroscia fragilis* (Redtenbacher, 1908).](image)

Hausleithner (1991: 221) recorded two males of *fragilis* from Kinabalu Park, Sabah: this is probably a misidentification. There are two relatively common species of green *Necroscia* in the Park HQ area; the male of one is very similar to *fragilis*, but may be distinguished by examination of the anal segment (specimens of this unidentified species are coded 1990/M in my collection).

Egg (figs 9-11)

The examined egg was removed from the genital operculum i.e. it was ready to be laid when the insect was killed. The operculum of the egg has a large, strongly convex, plate-like pseudocapitulum mounted on a stalk; it is so large that it was initially mistaken for a partly detached operculum (fig. 11). Capsule pale brown with a cream micropylar plate. Length 6.2mm, height 1.6mm, width 1.4mm.
Figures 9-11. Egg of *Necroscia fragilis*.

9. Dorsal view. 10. Lateral view. 11. Lateral view (not to same scale as figs 9 & 10).

Necroscia pallida (Redtenbacher, 1908) (figs 12-26).

Aruanoidea pallida Redtenbacher, 1908: 524; Brock, 1998: 48. Lectotype ♀ (NHMW, data below); Paralectotypes: ♂ (NHMW, data below); other(s) [including ♂] (MNHN) Sabah, Kinabalu.

Aruanoidea affinis Redtenbacher, 1908: 525 [in part – Bornean material only].

[Synonymised in error with *Necroscia affinis* (Gray, 1835) by Günther, 1935: 13. Corrected here][Not *Aruanoidea pallida*; Günther, 1932: 70. Misidentification].

Material examined

♂ (SMTD) Kinabalu, Borneo.

♀ (SMTD) Kinabalu, Borneo; *Aruanoidea affinis* Gray, K.B.

♀ (ZMHB) Borneo; *affinis* Brunner det. [rest of data not recorded]

♂ (ZMUH) Kinabalu, Borneo; *pallida* Günther det. [rest of data not recorded].

Notes on *Necroscia affinis*, *Necroscia fragilis*, and *Necroscia pallida*

This species has been misidentified on a number of occasions. Some of the confusion is perhaps partly due to Brunner and Redtenbacher labelling some specimens of *pallida* as *affinis*. Two males of *pallida* in NHMW were labelled as *affinis* by Redtenbacher. A female in Berlin (ZMHB) was misidentified by Brunner: it is labelled “*affinis* Brunner det.”

I have not examined the type material in Paris (MNHN), which should include at least one male, but since Redtenbacher did not recognise his males of “*affinis*” as belonging with the *pallida* females, it is quite possible that the MNHN material is a different species.

Two male specimens of "*pallida* det. Günther" in Hamburg (ZMUH) are correctly identified; these specimens have not previously been recorded. However, the female specimen of "*pallida*" in ZMUH that was recorded from Bukit Obat (Günther, 1932) is a different species; this is currently unidentified and I have 2♀♀ and 1♂ in my own collection that have been assigned the code 1994/Z.

I have not examined the male and female “*affinis*” that Günther recorded from Tibang in 1935 (specimens in Stockholm: NHRS). I have not examined the female, from Samarinda in Kalimantan, which was recorded by Giglio-Tos (1910: 49) as a doubtful specimen of *Aruanoidea affinis* (specimen in Torino: MRSN). The identities of these three specimens are unclear; they may be *pallida* or they may be one, or more, of the similar species of *Necroscia* which occur in Borneo.

![Figures 12-14. Abdomen of male *Necroscia pallida* (Redtenbacher, 1908).](image)

15. Female. 16. Male.
17-19. Portions of costal region of the hind wings (not to same scale).
Notes on Necroscia affinis, Necroscia fragilis, and Necroscia pallida

Diagnosis
There are at least seven species of Necroscia in Borneo that have a very similar habitus and coloration. The relative lengths of the legs and wings are useful characteristics for helping to distinguish some of these species. However, these features alone are not sufficient to distinguish all the species, detailed examination of the ocelli, anal segment, cerci, and praeopercular organ is necessary.

Both sexes: Body, legs and costal region of wing mid-green, or occasionally brown; anal region of wings clear; eyes pale cream. Lacking distinct ocelli. Mesonotum sparingly granulose with a fine median longitudinal carina. Cerci cylindrical, slightly constricted at the base, apex tapering to a point. Full measurements for the largest specimen of each sex in my collection are given in table 2.

Table 2. Necroscia pallida (Redtenbacher, 1908). Measurements in mm.

<table>
<thead>
<tr>
<th></th>
<th>♂</th>
<th>♀</th>
<th>♂</th>
<th>♀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length</td>
<td>68.5</td>
<td>101</td>
<td>19.9</td>
<td>27.9</td>
</tr>
<tr>
<td>Antennae</td>
<td>71</td>
<td>88</td>
<td>20.1</td>
<td>29.6</td>
</tr>
<tr>
<td>Head</td>
<td>2.6</td>
<td>4.4</td>
<td>13.1</td>
<td>17.5</td>
</tr>
<tr>
<td>Pronotum</td>
<td>2.6</td>
<td>4.0</td>
<td>11.9</td>
<td>15.6</td>
</tr>
<tr>
<td>Mesonotum</td>
<td>10.9</td>
<td>14.5</td>
<td>11.9</td>
<td>15.6</td>
</tr>
<tr>
<td>Metanotum</td>
<td>4.6</td>
<td>6.9</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Median segment</td>
<td>4.8</td>
<td>8.0</td>
<td>19.3</td>
<td>25.7</td>
</tr>
<tr>
<td>Fore wing</td>
<td>4.2</td>
<td>6.9</td>
<td>19.0</td>
<td>23.9</td>
</tr>
<tr>
<td>Hind wing</td>
<td>35</td>
<td>55</td>
<td>7.2</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Male (figs 12-14, 16-17 & 20): No brown males have yet been found, all are green. Head, thorax and tegmina with a narrow pale yellow stripe, costal vein of hind wing with yellow spots along the length (fig 17), and a few yellow spots occur on the tegmina in addition to the stripe. Hind legs just reaching apex of abdomen; in a few cases the legs exceed the abdomen by up to 1mm, probably due to shrinkage of the abdomen during preservation. Wings to distal end of 5th abdominal segment. Anal segment with an apical notch (fig 17). Vomer with a single spine curving to the right (fig 20). Body length 61.5-68.5mm.

Female (figs 15, 18-19 & 21-23): Two of the 11 females were brown; none have the yellow markings found in the male. Hind legs just reaching the end of 7th abdominal segment. Wings reaching half way along 6th abdominal segment (some appear to reach the 7th segment due to distorted or shrunken abdomens). Lacking an obvious praeopercular

Figure 20. Vomer of Necroscia pallida.
organ. Body length 85-101mm.

Figures 21-23. Abdomen of female *Necroscia pallida* (Redtenbacher, 1908).

Egg (figs 24-26): Capsule very pale brown with a cream micropylar plate. Length 7.1mm, height 1.4mm, width 1.4mm. The egg has a large flat pseudocapitulum that is attached to the operculum at the dorsal end (fig 24). The pseudocapitulum could be mistaken for the operculum but is recognisable because it is slightly too small to be the operculum.

Figures 24-26. Egg of *Necroscia pallida* (Redtenbacher, 1908).
Notes on *Necroscia affinis*, *Necroscia fragilis*, and *Necroscia pallida*

Distribution & habitat

All the specimens that I have collected are from lowland rainforest areas. One specimen in my collection (PEB-3581), which I did not collect, was collected at an unspecified point along the Kota Kinabalu to Tanbunan road and could therefore be from either lowland or montane forest. The distribution map (fig 27) shows the known localities; the specimen from the Kota Kinabalu to Tanbunan road is plotted at approximately the mid point. Based on specimens that I have personally collected in Borneo, *Necroscia pallida* is almost as abundant as *Necroscia prasina* (Audinet-Serville) (24 and 28 specimens respectively), and both are much more common than any other species in the genus (from 1 to 7 specimens).

Notes

Two male specimens, collected at Sepilok on 15th December 2006, are particularly memorable. PEB-3564 had three legs when found, something I have only encountered twice before in the wild: in a male *Carausius chani*, and in a female *Phobaeticus kirbyi*. The three-legged *N. pallida* had a right mid leg and both hind legs present. What was more startling was the second male PEB-3563 which was on the adjacent branch of the same tree – it had only two legs: left hind leg, and right mid leg. I believe this is the first record of a two-legged phasmid being found in the wild. To find two such phasmids in close proximity suggests a common cause for the leg loss. In captivity phasmids usually lose legs either by interaction with other phasmids in a crowded cage, or because of difficulty shedding their skin. In the wild both of these causes are unlikely, when unconfined they should be able to select suitable conditions to shed their skin. There had been heavy rain earlier in the evening and it was still raining slightly when they were found, both were in exposed position, so it is conceivable that the leg loss was caused by heavy rain. A more likely explanation is predation by small predators, perhaps ants; a large predator is unlikely to have lost both phasmids. If they were attacked while sheltering during the heavy rain escape would have been more difficult than normal.

All the examined specimens are green, or were clearly originally green, except for two of the four females from Badas swamp forest (PEB-2388, PEB-2389) that were brown when they were found. This coloration should not be confused with specimens that are discoloured due to preservation. One of my females (PEB-2377) was originally green but has lost all the green except for a few veins on the costal region of the wings; the resulting colour is similar to the brown specimens but easily recognisable under magnification.

The paralectotype has a pinkish tinge to the anal region of the wings; this not present in any other examined specimen of this species.

Acknowledgements

I thank staff at Dresden (SMTD) for the loan of their specimens, and Paul Brock (Brockenhurst, UK) for the loan of his male specimen.
References

Notes on *Necroscia haanii* Kirby, 1904 from Borneo, including a new synonym.

P.E. Bragg, 8 The Lane, Awsworth, Nottinghamshire, NG16 2QP, U.K.
Email: pbragg@aol.com

Abstract
The female of *Necroscia haanii* Kirby, 1904 is briefly redescribed, the male and egg are described for the first time; all are illustrated. The type material of *N. haanii* is discussed, and a lectotype is selected. *Aruanoidea schoenbergi* Redtenbacher, 1908 is a new synonym of *N. haanii*.

Key words
Phasmida, *Necroscia haanii*, *Aruanoidea schoenbergi*, Lectotype, New synonym, Borneo.

Introduction
In 1842 de Haan described three variants of *Necroscia punctata* (Gray, 1835). In 1904, Kirby named two new species based on de Haan’s descriptions and material in the collection of the Natural History Museum, London (BMNH): *Necroscia haanii* from Borneo, and *N. horsfieldii* from Java. The only subsequent record of *Necroscia haanii* is my own record for Kalimantan (Bragg, 2001). Redtenbacher (1908) treated all de Haan’s material as *punctata*. The status of *punctata* in Borneo has recently been reviewed (Bragg, 2007).

Kirby did not redescribe *Necroscia haanii*, he indicated it as a new replacement name (by using *n.n.* – an abbreviation of *nomen novum*) for de Haan’s *Phasma (Necroscia) punctata* variation a; he indicated there was material in BMNH but did not indicate that it was type material. However, there is no evidence that Kirby had seen de Haan’s material, so he was really basing the new species on the BMNH specimen and de Haan’s written description. Kirby’s specimen, which is clearly labelled, in BMNH must therefore be considered a type specimen, along with de Haan’s material; both specimens are female.

When I isolated and catalogued the type material (Bragg, 1996) in the Leiden Museum (RMNH) some types presented particular difficulty. Many of de Haan’s specimens did not have locality labels; in most cases this was not a problem because his specimens were easily recognisable as the only specimens of a particular species, or the only old specimens. However, in the case of *N. haanii*, there were a number of specimens of an appropriate age but without any data, these were grouped, with specimens from several Indonesian islands, under the heading of *punctata*. De Haan’s description of his *punctata* variations are so brief that it was not possible to identify the individual specimens with certainty. It is possible that the specimen that I selected may not even be from Borneo. In view of the uncertainty regarding the identification of the RMNH type, and the fact that Kirby’s species is really based on the BMNH specimen, I am selecting the BMNH specimen as the lectotype.

When it was described by de Haan, and when named by Kirby, only the female of *N. haanii* was known. However, on a visit to Berlin (ZMHB) I borrowed the holotype of *Aruanoidea schoenbergi* Redtenbacher, 1908. Comparison with my material from Kalimantan showed that *schoenbergi* is the male of *haanii*. Another male was located amongst some unidentified material in the BMNH collection. The adults are briefly redescribed, the egg is described, and the adults and egg are illustrated here for the first time. Specimens in my collection are prefixed PEB- and individually numbered.
Necroscia haanii Kirby, 1904

Material examined:
♀ Lectotype *Necroscia haanii* (BMNH 56.44) SARAWAK.
♂ Holotype *Aruanoidea schoenbergi* (ZMHB) S.O.-BORNEO, Wahnes S., Wolf v. Schoenberg V.
♂ (PEB-2020) KALIMANTAN Tengah, Sungai Sabangau, Kelamenkari. disturbed in daytime, P. Jenkins, 20.viii.1993;

Figures 4-7. *Necroscia haanii* Female.
Female (figs 1 & 4-7)
Body, legs, and costal region of wings yellow with brown blotches (fig 1); anal region of wings pale pink. Measurements in table 1 are from my specimen only.

Head with two distinct ocelli. Mesonotum roughly granulose. Mesosternum and anterior half of metasternum granulose. Mesopleura and metapleura slightly granulose. Wings reaching to half way along seventh abdominal tergite. Seventh tergite about ¼ as long as 6th; 8th ½ as long as 6th; 9th only slightly more than ½ length of 8th; 10th about same length as 9th.

Tenth tergite with a semicircular apical notch; lamina supraanalis clearly visible, apex almost straight. Praeopercular organ consisting of a small pair of rounded, elongated, tubercules: almost a pair of short parallel ridges (fig 6). Operculum setose throughout its length, with only a very slightly notched apex. Cerci slightly clubbed.

Notes on *Necroscia haanii*

Male (figs 2-3 & 8-16)

Body coloration as in female, except BMNH male which is green with pale yellow blotches and black knee joints (fig 3). Anal region of the wing of *schoenbergi* HT has pink veins and a very faint pinkish tinge between the veins (region may have been pink originally); PEB-2020 has been decolourised by alcohol; anal region of BMNH male not examined.

Head with two distinct ocelli. Mesonotum roughly granulose. Mesosternum and anterior half of metasternum granulose. Mesopleura and metapleura slightly granulose. Wings reaching almost to end of 6th tergite.

Tergites 2-5 of about equal length; 6th about ¼ length of 5th; 7th about two thirds length of 6th; 8th only slightly more than ½ length of 7th; 9th almost as long as 7th; 10th slightly shorter than 8th. Anal segment with apical margin deeply indented so the segment appears to have two apical projections (figs 8 & 10).

Apical projections of anal segment with small spines on the ventral surface (HT of *schoenbergi* left 17, right 14; BMNH left 14 (some minute), right 10; PEB-2020 left 19, right 18). This species has very distinctive branched cerci (figs 10 & 11), the left and right cerci are the congruent. Vomer unispinose: the spine is strongly curved towards the dorsal surface and is offset to the right (figs 14 & 15). Another sclerotized part of the genitalia (fig 16) was isolated during preparation of the vomer, this was not visible externally and the original orientation is unknown.

Body length: 56-60mm (HT of *schoenbergi* actually measures 61mm but the abdomen has been lengthened by about 1mm by a repair). Measurements given in table 1 are from the HT of *schoenbergi*, except for the hind tarsi which are missing, this measurement was taken from PEB-2020.

Figure 13. Holotype of *Aruanoidea schoenbergi.*

Egg (figs 17-19)
The following is based on three eggs removed from PEB-2025; they were not fully hardened, and were slightly distorted during removal. Capsule a pointed cylinder with lateral and dorsal flanges on the polar end; surface rugulose. Micropylar plate about one third of the way from the polar end. Operculum flat, surrounded by a ring of setae on the collar. Length 6.1mm, height 1.6mm, width 1.4mm.

| Table 1. *Necroscia haanii* Kirby, 1904. Measurements in mm. |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | ♂ ZMHB | ♀ PEB-2025 | ♂ ZMHB | ♀ PEB-2025 |
| Total length | 60 | 69 | 20.7 | 20.3 |
| Antennae | 62 | >59 | 19.6 | 19.6 |
| Head | 2.9 | 3.3 | 8.8 | (5.6**) |
| Pronotum | 2.4 | 3.4 | 12.6 | 11.6 |
| Mesonotum | 9.2 | 9.4 | 10.9 | 10.6 |
| Metanotum | 4.3 | 6.0 | 5.4 | 5.4 |
| Median segment | 4.3 | 5.3 | 17.3 | 18.8 |
| Fore wing | 4.1 | 6.0 | 16.7 | 17.0 |
| Hind wing | 34 | 44 | (6.7*) | 6.7 |

* hind tarsus of HT missing, measurement taken from PEB-2020.
** basal segment only, rest missing.
Notes on *Necroscia haanii*

Distribution
The difficulty in identifying de Haan’s specimen means there is no certainty that it is the same species as the lectotype, so Pontianak cannot be regarded as a known locality for *N. haanii*. The holotype of *schoenbergi* is from a rather vague “S.O.-Borneo” [Eastern Kalimantan], and the lectotype of *haanii* is an equally vague “Sarawak”. Although there are only two specific localities known for this species, the five confirmed specimens of this species show a very wide distribution: Eastern Kalimantan, Central Kalimantan, Sabah, and Sarawak. The distribution map (fig 20) shows only the two specific localities: Kelambenkari and Telupid.

Figure 20. Distribution of Necroscia haanii.

References

Bragg, P.E. (2007) Notes on *Necroscia punctata* (Gray, 1835) and *Necroscia bistriolata* (Redtenbacher, 1908). *Phasmid Studies*, 16(2): 34-41.

Lectotype designation for the type species of *Colossopus, C. grandidieri* Saussure, 1899 (Orthoptera: Tettigoniidae: Conocephalinae).

M. Ünal & G.W. Beccaloni.

M. Ünal, Abant Izzet Baysal Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 14280 Bolu, Turkey.

G.W. Beccaloni, Entomology Department, The Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, U.K.

Abstract

The male syntype of *Colossopus grandidieri* Saussure, 1899 preserved in the Museum d'Histoire Naturelle, Geneva (MHNG) is designated as the lectotype of this species. A supposed female syntype of this species in the Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt (SMFD) is identified as a specimen of *Oncodopus zonatus* Brongniart, 1897 and is shown not to be part of the type series.

Keywords

Orthoptera, Tettigoniidae, Conocephalinae, *Colossopus grandidieri*, *Oncodopus zonatus*, Madagascar, lectotype designation.

We have been working on a taxonomic revision of the endemic Madagascan genera *Oncodopus* Brongniart, 1897 and *Colossopus* Saussure, 1899 for several years. One of us (G.W. Beccaloni) collected a good series of specimens of *Colossopus* and *Oncodopus* in the southern half of Madagascar in both 2004 and 2007, and the other author (M. Ünal) has studied the specimens of these genera preserved in European museums, including the types. In the course of our study we have become aware that there is a problem regarding the putative syntypes of *Colossopus grandidieri* Saussure, 1899.

Saussure, describing the genus *Colossopus* and its type species *Colossopus grandidieri*, gave a description of both sexes but did not give any information about the number of syntypes or where they were preserved (Saussure, 1899: 627-628). We have found seven putative syntypes of *C. grandidieri* in three museums: one male and two females in the Museum d'Histoire Naturelle (MHNG), Geneva; three females in the Muséum National d'Histoire Naturelle, Paris (MNHN); and one female in the Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt (SMFD). The problem is that there are two species represented amongst these supposed syntypes. The male and two females in Geneva and the three females in the Paris agree exactly with Saussure's original description of *C. grandidieri* and his illustrations of this species (Saussure, 1899: 628 & Taf. 38: Figures 24-27), but, the single female in Frankfurt is a different species, which can easily be identified as *Oncodopus zonatus* Brongniart, 1897. It is clear that Saussure did not describe the characters of this female in the original description of *C. grandidieri*; for example, this species has a simple spine (with a single point) on the head, whilst the description of *Colossopus* Saussure, 1899 clearly states it has a trifid (three pointed) spine on the head. Furthermore, Saussure studied both sexes of both *O. zonatus* and *C. grandidieri* in the same paper (Saussure, 1899: 626-628 and Taf. 38, Figures 23-27). In fact, he described the female of *O. zonatus* for the first time (Saussure, 1899: 626-627). Therefore, it is difficult to believe that Saussure regarded the specimen preserved in Frankfurt as a syntype of *C. grandidieri*.

The data labels pinned under the syntypes preserved in Geneva and Paris, are identical to each other (as in fig. 1), but differ from the data labels of the female *O. zonatus* in Frankfurt (fig. 2). The female *O. zonatus* in Frankfurt has an identification label which reads “*Dynatopus grandidieri*” (fig. 2), whilst the other syntypes have identification labels which read “*Colossopus grandidieri*” [sic] (as in fig. 1). These labels are written in a different style. We therefore reject the notion that the female *O. zonatus* in Frankfurt is a syntype and in order to ensure nomenclatural stability we select the single male syntype in Geneva as the lectotype of *Colossopus grandidieri* Saussure, 1899.
Lectotype designation for *Colossopus grandidieri* Saussure, 1899

Colossopus grandidieri Saussure, 1899: 628, Taf. 38: figures 24-27.

Data labels from the lectotype are shown in fig. 1.

![Figure 1. Labels and data of lectotype (male) of *Colossopus grandidieri* Saussure, 1899. (Illustration from the OSF online).](image1)

Oncodopus zonatus Brongniart, 1897

Oncodopus zonatus Brongniart, 1897: 207-208, figs 38-39.

This is labelled as "*Dynatopus grandidieri*" and was supposed to be one of the syntypes of *C. grandidieri* (Eades & Otte, 2008; Systax, 2003). The DORSA database actually states that it is the holotype of *C. grandidieri*, which is clearly incorrect since no holotype was designated by Saussure (1899), and at least one male and one female specimen were described by Saussure in the original description (Systax, 2003). *Dynatopus* is not a published name in Orthoptera; Saussure may have intended to describe it as a new genus and species. It is possible that this female *O. zonatus* specimen was examined by Saussure and described (as *O. zonatus*) in his 1899 paper. Data labels for this specimen are shown in fig. 2.

![Figure 2. Labels and data of the female specimen of *Oncodopus zonatus* preserved in Frankfurt. (Illustration from the OSF online).](image2)

References

Phasmd Studies, 17(1): 35
Reviews and Abstracts.

Phasmid Abstracts

The following abstracts briefly summarise articles that have recently appeared in other publications, or articles published since 1992 that have only recently come to the attention of the editor. Some of these may be available from local libraries. Others will be available in university or college libraries, many of these libraries allow non-members to use their facilities for reference purposes free of charge.

The editor of Phasmid Studies would welcome recent abstracts from authors so that they may be included in forthcoming issues. In the case of publications specialising in phasmids, such as Phasma, only the longer papers are summarised.

The stick insects were obtained from Henan Province of China in the years 1984-1996. Among them 3 new species are described: Baculum dolichocercatum, Phobaeticus longicornis, Micadina henanensis. All type specimens are deposited in Shangahii Institute of Entomology, Chinese Academy of Science.

In this paper, 9 species of walking stick insects (Phasmatodea) are reported from Hong Kong. They belong to 6 genera in 3 families, one species: Sipyloidea shukayi, is described as new to science. The key of Phasmatodea from Hong Kong and the key to the known species of the genus Sipyloidea from China are given. All the specimens are kept in the collections of Shanghai Institute of Entomology, Academia Sinica.

A translation of Bragg, P.E. (2007) Biographies of Phasmatologists – 1. Henry Walter Bates. Phasmid Studies, 15(1&2): 1-4. Henry Walter Bates (1825-1892) was an explorer and prolific entomologist. Although he published only one paper on phasmids, it was a significant paper, increasing the number of known species by 10%. An index to the 52 species of phasmids described by Bates is provided.

A translation of Bragg, P.E. (2007) Biographies of Phasmatologists – 4. William Forsell Kirby. Phasmid Studies, 16(1): 5-10. William Forsell Kirby (1844-1912) was an English entomologist and folklorist. His life and phasmid work is outlined. He described 70 species and 22 genera of phasmids. His Synonymic Catalogue of Orthoptera was a complete catalogue of world species that has served phasmatologists for 100 years.
Phasmid abstracts

Phasmotaenia godeffroyi (Redtenbacher, 1908) from Malaita, Solomon Islands is already quite widespread in European cultures. It was introduced as Phasmotaenia australe (Günther, 1933) in 2006 and is apparently relatively easy to breed in captivity. Information is provided on the classification, culture-history and origin of the culture-stock, breeding conditions and alternative food plants. Brief notes on the genus Phasmotaenia Návas, 1907, its species and synonyms are presented as well.

This paper recorded 22 species of walking sticks and one species is new recorded from Fujian Province. They belong to 2 families: Phasmatidae and Heteronemiidae, 4, subfamilies and 9 genera. One new species is described: Baculum wuyishanense Chen, n.sp. This new species is allied to B. xingsbeexense Chen & He, but differs in basal two joints of antennae yellow, the colour pattern of meso- and metathorax and the shape of anal segment are also different.

A new species: Sinophasma largum is described from China (Sichuan, Guizhou, Hunan, Hubei, and Guangxi Provinces). The type specimens are in the Institute of Zoology, Academia Sinica.

This paper deals with a new species of walking stick from the Shanxi Province, China. The new species, Baculum jinnanense, is compared with related species of the genus Baculum. Figures of characteristics are provided. The type specimen is deposited in the Insect Collection of the Forest Resources College, Beijing Forestry University.

Three species of Phasmida are reported. Phobaeticus kirbyi Brunner is a new record from China. The female of Sinophasma longicauda Bi, and the male of Baculum pingiense Chen & He are newly described. Four figures of characteristics are also provided.

Describes Paraclitumnus henanensis n.sp. from Henan, China. The two female types are in Beijing Forestry University.

A new species of *Sinophasma* Günther from Guangxi of China is reported. The two male type specimens of *Sinophasma latisectum* are deposited in the Institute of Zoology, Academia Sinica. This new species is similar to *S. klapperichi* Günther, but can be separated from it by the combination of the following characters: anal segment elongate and its median groove rather wide and deep; the shape of subgenital plate is quite different. The female is unknown.

Two new species and one unknown female of the genus *Sinophasma* from Guangdong Province, China are described. They are: *S. trispinosum* Chen & Chen, n.sp., *S. unispinosum* Chen & Chen, n.sp., and the female of *S. pseudomirabile* Chen & Chen. The type specimens are kept in the Zhongshan University, Guangzhou, and Beijing Forestry University, Beijing.

Two new species of *Sosibia* Stål from Guangdong are described: *Sosibia guangdongensis* and *Sosibia truncata*. The type specimens are deposited in Zhongshan University.

A new species of the genus *Baculum* Saussure of the family Phasmatidae from Guangdong is described. The new species, *Baculum shenzhenense*, is allied to *B. asaphum* Chen & He but can be separated by the larger size teeth of fore femora, relatively developed different anal segment form, longer operculum and cerci. All the type specimens are kept in Zhongshan University, Guangzhou.

This paper deals with a species of *Baculum* saussure from Sichuan. The species closely resembles the female of *B. insingnis* (Wood-Mason), but may be distinguished from the latter by the front femora with two series denticles, a very short median segment, a very long operculum, and the acuminate apex. The type specimens are kept at Beijing Forestry University.

In this paper, a new species of the genus *Phobaeticus* from Anhui Province is described. *Phobaeticus yuexiensis* n.sp. is allied to *Phobaeticus sineyi* Brunner, but it differs from the latter in that the femur of the front legs have more than 12 teeth; 1/3 of the middle tibia near the base is without any triangular lamellae; the median segment is shorter and the 6th sternite is pointed. The type specimen is deposited in the Insect Collection of Beijing Forestry University.

This paper is a report of stick insects from Maoershan Preserve, Xingan County, Guangxi Autonomous Region. They represent two families: Phasmatidae and Heteronemiidae. Among them seven species are new to Science: *Baculum maoershanense*, *Baculum flavofasciatum*, *Leptynia xinganensis*, *Sinophasma furcatum*, *Sipyloidea completa*, *Sipyloidea cavata*, *Phraortes corniformis*.

This paper deals with *Parasipyloidea* Redtenbacher, which is recorded for the first time in China, and one species new to science is described: *Parasipyloidea emeiensis*. The specimen is kept in the Insect Collections of Beijing Agricultural University.

The present paper deals with 7 species of Phasmatodea collected from Mt Baishanzu in Zhejiang Province. Among them 5 new species are described: *Entoria baishanzuensis*, *Micadina zhejiangensis*, *Sinophasma crassum*, *Sipyloidea obvius*, *Phraortes nigrarcarinatus*. The type specimens are deposited in the collection of Beijing Forestry University.

This paper deals with a new species of the genus *Paramyronides* Redtenbacher from China. Comparison is made between *P. unidentatus* n.sp. and other similar species, and the figures of its features were drafted.

The genus *Trachythorax* was established by Redtenbacher in 1908. Heretofore nine species have been recorded in the world, and three species are known in China. They are *T. atrosignatus* Brunner from Yunnan, *T. sexpunctatus* Shiraki from Taiwan and *T. longialatus* Cai from Sichuan. In this paper a new species *T. fuscocarinatus* is described from Hainan Province, China. The type specimen is deposited in the Institute of Zoology, Academia Sinica.

The genus *Asceles* was little known to China. A new species, *Asceles quadriguttatus*, collected from Yunnan Province is described in this paper. This new species is allied to *A. longicauda* (Bi), but differs from it by mesonotum near the longitudinal carina with a row of granulate tubercules; tegrum of anal segment with narrow base, about 4 times as long as the 9th abdominal segment and its posterior margin with wider emargination. The type specimen is deposited in the Institute of Zoology, Academia Sinica.

In the present paper the previously unknown male of *Paramyronides unidentatus* Chen & He is described. The specimens are kept in the Insect Collections of Beijing Agricultural University.

In this paper two unknown species of males of *Parasipyloidea emeiensis* Chen & He and *Trachy thorax fuscocarinatus* Chen & He are described. The specimens are kept in the Insect Collection of Beijing Forestry University.

This present paper is a report of the stick insects collected by the members of Fauna Expedition to Three Gorge Reservoir Area of Yangtze River during 1993-1994. Ten species belonging to two families, five genera are dealt with, in which one genus and six species are new to Science. New genus: *Paraentoria* [type species *P. sichuanensis*]. New species: *Paraentoria sichuanensis, Baculum wushanense, Baculum xingshanense, Baculum bifasciatum, Baculum nigrolineatum, Micadina conifera.* All the type specimens are kept in the Institute of Zoology, Chinese Academy of Sciences.

The present paper deals with two new species of Phasmatidae from Sichuan: *Baculum politum* & *Baculum huayingense.*

The present paper deals with a new genus, *Dianphasma,* and a new species, *Dianphasma microptera,* of Phasmatodea from Yunnan, China. The type specimen is deposited in the Institute of Zoology, Academia Sinica, Beijing.

In this paper, *Prosentoria bannaensis* n.sp. is described from a single female collected in Yunnan Province. The type specimen is deposited in the Institute of Zoology, Academia Sinica.

This paper deals with three new species, *Baculum xinganense* belonging to Phasmatidae, *Proseles guangxiensis* and *Asceles caecius* belonging to Heteronemiidae of Phasmatodea from Guangxi, China. Type specimens are deposited in the institute of Zoology, Academia Sinica and Beijing Forestry University respectively.

Three new genera and two new species of Heteronemiidae from South China are described, in this paper. New taxa: *Neososibia* n.gen., with the type species *Neososibia breuispina* n.sp.; *Spiniphasma* n.gen., with the type species *Spiniphasma guangxiense*; *Acanthophasma* n.gen., with the type species *Oxyartes varia* Chen & He, 1992. All the type specimens are kept in the Zhongshan University and China Agricultural University.

The paper deals with three new species of Heteronemiidae and Phasmatidae from Guangxi, China. *Asceles longzhouensis* is allied to *A. brevipennis* Redtenbacher, but differs in head without granules, anterior horn of tegmina obtuse, hindwings light yellow. *Aruanoidea maculata* n.sp. is similar to *A. flaoescens* Chen & Wang, but can be easily distinguished by pronotum, meso-and metapleura covered with granules, body colour and shape of anal segment also different. *Baculum spinicornum* n.sp. resembles *B. chinense* (Brunner), but easily distinguishable from the latter by two spines of head rather long and pointed, the posterior margins of the 2nd-7th sterna with two small elevations respectively. The types are kept in the insect collection of China Agricultural University.

This paper deals with two species belonging to Phasmatidae and Heteronemiidae, collected from Jiangxi and Guangxi, China are reported as new to Science. *Paraentoria lushanensis* n.sp. is allied to *P. sichuanensis* Chen & He, it differs from the latter in body covered with sparse setae, lobes on the base of middle femur not divided and with distinct dorsal lobes near base on hind femur and tibia. *Sinophasma atratum* n.sp. is close to *S. largum* Chen & Chen, but the colour pattern of body and legs different, granules on mesonotum concentrated mainly on side of longitudinal carina, subgenital plate with nearly two symmetrical valvulae backward. The type specimens are kept in the Institute of Zoology, Academia Sinica.

The present paper deals with seven species of phasmsids, belonging to five genera of two families, among them one genus is new to Science, collected from Tianmushan National Nature Reserve (30° 22 'N, 119° 26' E) in Zhejiang province. *Euphasma* n.gen. has the type species *Micadina henanensis* Bi & Wang, 1998.

This paper deals with the genera *Acrophylla* Gray and *Parapachymorpha* Brunner of Phasmatodea, which are recorded for the first time from China. Two species *Acrophylla sichuanensis* and *Parapachymorpha tetracantha*, are new to Science. *Acrophylla sichuanensis* n.sp. is very similar to *A. phyllocerca* Redtenbacher, but differs from the latter in: 1) hindwings longer, extending to 3rd abdominal segment; 2) denticle number on the four posterior legs different; 3) posterior margin of anal segment nearly truncate.
Parapachymorpha tetracantha n.sp. is related to P. spinosa Brunner, but it can be distinguished from the latter by: 1) mesa- and meta-thorax only with sparse spines; 2) each tergite of 6-10 abdominal segments without distinct spines; 3) carinae on the four posterior femora and tibiae covered with obtuse denticles. The type specimens are kept in the Collection of the Entomological Museum, Northwestern Agricultural University, China.

Three new species of the genus Carausius Stål: C. undatus n.sp., C. femoralis n.sp., C. lijiangensis n.sp., are described from southwestern China. The type specimens are deposited in the Institute of the Chinese Academy of Sciences and Beijing Forestry University.

Two new species of Sosibia are described from Medog, Xizang, China: Sosibia medogensis, Sosibia brachyptera. The types are kept in the Institute of Zoology, the Chinese Academy of Sciences.

The present paper is a report of the stick insects collected from Mt. Shiwandashan in Guangxi during 1998-2000. Among them 17 species belonging to two families and 11 genera are reported. One new genus Paraprosceles (type species P. microptera Chen & He) is described. Five new species are described: Baculum acutum, Baculum annuliventris, Asceles dilatatus, Paramyonides albopunctata, Paraprosceles microptera. Two species are newly recorded for China. Type specimens are in the Institute of Zoology, Chinese Academy of Science, Beijing and Zhongshan University, Guangzhou.

Three new species of Phasmatidae and Heteronemiidae from Guangdong Province are described: Baculum lianxianense, Marmessoidea viridescens, & Paramenexenus congnatus. All the type specimens are kept in Zhongshan University, Guangzhou.

This paper deals with 30 species of phasmids, belonging to 18 genera and five families, collected in the Hainan Province of China. Three genera and 16 species are new to Science, and two genera are new to China. The new genera are: Nanhuaphasma Chen, He & Li (type species: N. hamicercum) in Pseudophasmatidae, Qiongphasma Chen, He & Li (type species: Q. jianfengense) in Heteronemiidae, and Pseudocentema Chen, He & Li (type species: P. bispinatum) in Heteronemiidae. The new species are: Nanhuaphasma hamicercum Chen & He, Dixippus migriantennatus Chen & He, Dixippus hainanensis Chen & He, Proseceles balteatus Chen & He, Paramenexenus yangi Chen & He, Marmessoidea wuzhishanensis Chen & He, Qiongphasma jianfengense Chen & He, Pseudocentema bispinatum Chen & He, Sosibia hainanensis Chen & He, Baculum flavovittatum Chen & Li,
Baculum giganteum Chen & Li, Baculum wuzhishanense Chen & Li, Baculum nigrifactum Chen & Li, Baculum antennatum Chen & Li, Baculum viridulum Chen & Li, Baculum hainanense Chen & He. Type specimens are in the insect collection of the Institute of Zoology, the Chinese Academy of Sciences and Beijing Forestry University.

In this paper 16 species of stick insects belonging to the families Phasmatidae and Heteronemiidae collected from Fanjingshan National Nature Reserve in Guizhou Province are reported. Six new species are described: Sinophasma biacuminatum Chen & He, Sinophasma striatum Chen & He, Carausius thoracicus Chen & He, Parasinophasma fanjingshanense Chen & He, Baculum grandis Chen & He, Baculum fasciatum Chen & He. All type specimens are in the Beijing Forestry University.

The eggs of twelve species of the genus Baculum from China were studied, described, keyed and illustrated with 26 figures.

Two new species of Baculum from Mt. Jigong in Henan Province are reported as new to Science. Baculum jigongshanense is described from nine females and one male. Baculum vivinum is described from one female. The type specimens are in the collection of Beijing Forestry University.

This paper deals with 16 species and eight genera of Phasmatodea collected from Guizhou Maolan Nature Reserve. Three new species are described: Neososibia guizhouensis, Baculum liboensis, & Baculum maolanense. The type specimens are in the collection of Beijing Forestry University and Maolan Nature Reserve.

This paper deals with four new species of the genus Baculum from Henan Province. The new species are: Baculum femoratum, B. brevicercatum, B. interdentatum, and B. xixiaense. The type specimens are in the collection of Beijing Forestry University and Funiu Nature Reserve.

This paper describes two new species of the family Phasmatidae from Xizang and Yunnan, China. Baculum nyalamense n.sp. is similar to B. obnoxium (Brunner), but differs from B.
from the latter by the large-sized, hind femora longer, and the shape of anal segment and operculum are also different. *Paraclitumnus bannaensis* n.sp. is closely related to *P. apicatis* (Chen & He), but differs from the latter in the head rather elongated and flat, four posterior femora with 6-7 small teeth on the apical portion of inferior median carina. apico-lateral lobes of anal segment sharp, the size and shape of supranaal plate and cerci are also different. The types are kept in the Institute of Zoology, Academia Sinica.

In the present paper a new species of *Aruanoidea* Brunner, collected from Guangxi, is described. The type specimens of *Aruanoidea flavescens* n.sp. are kept in the insect collection of Beijing Forestry University.

The present paper deals with two species of the genus *Asceles*. *Asceles clavatus* is new to science and *A. bispinus* is new to China. The new species is described and figured. The type specimen is deposited in the insect collection of Beijing Forestry University.

This paper is a report on the stick insects collected by the Comprehensive Scientific Expedition to the southern Gansu forest area and Qinling Mountains Region, the Chinese Academy of Sciences during 1998-1999. Eleven species are dealt with, belonging to two families and two genera. Four new species of *Baculum* are described: *B. kangxianense*, *B. gansuenese*, *B. wenxianense*, and *B. spinulosum*.

This paper deals with a new species of *Baculum* from the Yunnan Province of China. The type specimen of *Baculum luopingense* n.sp. is deposited in the insect collection of Beijing Forestry University.

This paper deals with a new species of the genus *Baculum* of the family Phasmatidae collected from Yunnan Province, China. *Baculum nigrodentatum* n.sp. is allied to *B. apicalis* Chen & He, but differs in: (1) anal segment elongate and its posterior margin emarginate deeply; (2) supra-anal plate lanceolate; (3) ovipositor exceeding the tip of the operculum. The type specimens are deposited in the insect collection of Beijing Forestry University.

The stick insects of Madagascar are poorly known, having been neglected during nearly a century. They belong to four groups: Achriopterini, best known and less diversified taxon, Anisacanthidae and Antongiliinae, groups of which members show a wide range of
variation in body morphology and that include the vast majority of Madagascan species, and Damasippoididae, with few, rather scarcely seen species. Monandropterini often mentioned for Madagascar have their distribution probably limited to Mascarenes. Madagascar is also home to three naturalized alien species.

“Green, with red antennae, when alive”: extinction of *Xenomaches incommodus*, endemic phasmid of Rodrigues island (Phasmatodea). *Xenomaches incommodus* (Butler, 1876), endemic phasmid of Rodrigues island, is most probably an extinct species.

Food plants of Mascarenes stick insects: Mauritius, Réunion, Rodrigues (Phasmatodea). Mascarenes archipelago has a total of twelve stick insects species, of which one is exotic and one is extinct. They feed on about seventy listed plants. The number of plants eaten per stick insects species varies from one to 37. The overexploitation of one palm tree in Réunion endangers the very existence of one species of phasmid. A similar scenario has already led to the extinction of the only indigenous species recorded in Rodrigues.

Six species of *Pseudosermyle* Caudell, 1903 occurring in Mexico are discussed. Three new species from Mexico are described and illustrated, all of which are closely related to *Pseudosermyle phalangiphora* (Rehn, 1907): *P. chorreadero* **n.sp.** from both sexes, *P. procer* **n.sp.** and *P. claviger* **n.sp.** from the males only. The males of *P. inconguens* (Brunner v. Wattenwyl, 1907) and *P. tolteca* (Saussure, 1859) are re-described and illustrated. Detailed descriptions and illustrations are furthermore provided for both sexes and the eggs of *P. phalangiphora* (Rehn, 1907).

Taxonomic problems caused by misidentifications and wrong synonymies of previous authors concerning to these six species are clarified. A lectotype is designated for *Pseudosermyle incongruens* (Brunner v. Wattenwyl, 1907). *Ocnophila crudis* Brunner v. Wattenwyl, 1907 and *Dyme depressa* Brunner v. Wattenwyl, 1907 are shown to be junior synonyms of *P. phalangiphora* Rehn, 1907.

In addition to *Dyme mammillata* Brunner von Wattenwyl, 1907 (Species report No. 1, *Phasma* 16(61)) a second Peruvian species of the genus *Dyme* Brunner von Wattenwyl, 1907 was recently brought into culture: *Dyme bifrons* Stål, 1875. It is characterised by the blue bases of the fore legs of females and colourful males. The females show strong intraspecific variation of the coloration and armature of the head. Information is provided on the classification, culture history and origin of the present culture-stock, breeding and alternative food plants. Brief descriptions and illustrations are presented of the adults, nymphs and eggs.
Hennemann, F.H. & Conle, O.V. (2007) Studies on Philippine Lonchodinae, with the
descriptions of two new genera and eleven new species (Phasmatodea: Phasmatidae:
Lonchodinae). Mitteilungen der München Entomologische Gesellschaft, 97(Supp.): 3-88.

The subfamily Lonchodinae is a large but still rather poorly studied group of Old World
Phasmatodea. The collections of the authors include numerous species of Lonchodinae from the
Philippine Islands of Samar, Mindoro, Panay, Babuyan and Luzon, some of which are here
studied in detail. Two new genera and eleven new species are described. Keys to the genera and
a checklist of Philippine Lonchodinae are presented which lists 28 described species in nine
distinct genera.

The genus Mithrenes Stål, 1877 is re-described and distinguished from related genera.
Two new species are described based on both sexes and the eggs: Mithrenes mindorensis sp.n.
from Mindoro and Mithrenes panayensis sp.n. from Panay. A lectotype is designated for
Mithrenes asperulus Stål, 1877. The paralectotype of Lonchodes systropedon Westwood, 1859 is
conspecific with Mithrenes whiteheadi (Kirby, 1896) and Lonchodes nodulosus Brunner, 1907 is
the opposite sex and a junior synonym as is Dixippus bilobatus Brunner, 1907 (syn.n.). A
lectotype is designated for Dixippus bilobatus Brunner and descriptions are provided for both
sexes. Keys are presented to distinguish between the four described species in the genus.

The new species Lonchodes philippinicus sp.n. from Panay is described and illustrated
based on both sexes and the eggs. As currently treated, the genus Lonchodes Gray, 1835 is shown
to be polyphyletic. A critical discussion of the genus is presented, which briefly summarizes the
generic units or specific groups recognized within the genus. Species subsequently attributed to
Lonchodes Gray are here transferred to the genera Lonchododes gen.n., Mnesilochus Stål, 1877
and Hermagoras Stål, 1875. A list of species which belong in Lonchodes (sensu strictu) is
provided.

The new genus Lonchododes gen.n. (type-species: Lonchododes samarensis sp.n.) and
five new species are described and illustrated. Four species are known from both sexes and the
eggs: Lonchododes atrovirens sp.n. and Lonchododes grandis sp.n. from Panay, Lonchododes
samarensis sp.n. from Samar and Lonchododes babuyanensis sp.n. from the Babuyan Islands.
Lonchododes eurycanthoides sp.n. from Mindoro is described from the male and female alone.
Three species are transferred from Lonchodes Gray, 1835 to Lonchododes gen.n.: Lonchodes
putingmantsa Zompro, 2003 comb.n., Lonchodes tagalicus Stål, 1877 comb.n. and Lonchodes
troilius Westwood, 1859 comb.n. The female and egg of L. troilii (Westwood, 1859) are
described and illustrated for the first time and a re-description is provided of the male. Keys are
presented to distinguish between the eight known species in the genus.

A list of species is presented for Periphetes Stål, 1877. One new species, Periphetes
quezonicus sp.n., is described from Luzon based on the female and male. A detailed description
and illustrations of the egg of Periphetes forcipatus (Bates, 1865) from Sulawesi are provided.
Dixippus furcatus Brunner, 1907 and Periphetes duivenbodei elongatus Günther, 1938 from
Sulawesi and Periphetes sangirensis Dohrn, 1910 from Sangihe Island shown to be junior
synonyms of P. forcipatus (Bates) (syn.n.). Lectotypes are designated for Lonchodes analis
Brunner, 1907 and Lonchodes forcipatus Bates, 1865.

The new genus Matutumetes gen.n. is described for two new species from Mindanao,
both of which are known from the male and female: M. amoenus sp.n. and M. mindanaensis
sp.n.. This new genus is well characterized by the strikingly prominent praecopercular organ of
females. The eggs of Matutumetes gen.n. remain unknown.

Mnesilochus Stål, 1877 is re-established (stat. rev.), re-described and distinguished from
related genera. A list is presented of the 13 species currently included, 11 of which are here
transferred from either Lonchodes Gray, 1835 (sensu lato) or Phenacephorus Brunner, 1907. The
female and egg of Mnesilochus headalus Stål, 1877 are described and illustrated for the first time
and a re-description is provided of the male. Prisomera tuberculatum Brunner, 1907 is
synonymised with Mnesilochus mindanaense (Brunner, 1907) syn.n.. Prisomera modestissimum

Phasmid Studies, 17(1): 46
Brunner, 1907 was synonymised with *Mnesilochus modestus* (Brunner, 1907) syn.n.. The type-locality “S.O. Borneo” is shown to be wrong, the specimens most certainly originating from Sri Lanka. *Lonchodes jenswilhelmjanzeni* Zompro, 2007 is transferred to *Mnesilochus jenswilhelmjanzeni* (Zompro, 2007) comb.n.

A review is presented of the genus *Manduria* Stål, 1877, along with a re-description and brief notes on its systematic position. A key is provided to distinguish the females. The female paralectotype of *Lonchodes systropedon* Westwood, 1859 in BMNH is shown to be a specimen of *M. bilobatus* (Brunner, 1907). Holotypes of most new taxa are deposited in the State Zoological Collection Munich, Germany (ZSMC), paratypes in various public and private collections.

The new genus *Lobobilithra* gen.n. is established in the tribe Diapheromerini, with *Lobobilithra panguana* sp.n. designated as the type-species. Three new species are described: *L. boliviana* sp.n. from the Chapare Province of Bolivia and *L. mutica* sp.n. from North Peru from the females only, the type-species *L. panguana* sp. n. from East Peru from is described from both sexes and the eggs. *Libethra peruana* Caudell, 1918 is a junior synonym of *Ocnophila mainerii* Giglio-tos, 1910 (syn.n.). *Ocnophila ignava* (Westwood, 1859) from Brazil and *Rugosobilithra ramale* (Giglio-Tos, 1898) from South Ecuador are transferred to *Lobobilithra* gen.n.

A new species of the genus *Ocnophileoidea* Zompro, 2001 (tribe Ocnophilini), *O. dillerorum* sp. n., is described from the Huanuco Province of East Peru. This new species is known from both sexes and the egg. Holotypes of new taxa are deposited in MUSM and ZSMC, paratypes in the two mentioned institutions and the authors’ collections. All type specimens are dried and pinned.

The genus *Cranidium* Westwood, 1843 [type-species: *Diapherodes (Cranidium) serricollis* Westwood, 1843 = *D. gibbosum* Burmeister, 1838] is re-described. *Bacteria c1avigera* Redtenbacher, 1908, is shown to represent the male of *Cranidium gibbosum*, new synonym; lectotypes are designated for theses two taxa. Detailed descript ions and illustrations of both sexes and the eggs as well as a complete synonymic list are provided for *C. gibbosum*, which is the only species included in the genus. The synonymy of *D. (C) serricollis* with *C. gibbosum* is attributed to Charpentier (1845), not Kirby (1904). Detailed information is provided on the biology, natural habitats, food plant s and culturing of *C. gibbosum*. A brief review of the tribe Cranidiini is provided.

A complete taxonomic catalogue of the Stick and Leaf-insects (Phasmatodea) recorded or described from the mainland China (excluding Taiwan) is presented. 241 valid species are listed, which are currently attributed to 50 genera, 5 families and 7 subfamilies. Genera and species are listed alphabetically. All available type-data is provided based mainly on literary sources for
species described by Chinese workers from 1986 to 2006, including documented depository of type specimens.

The catalogue therefore also provides complete lists of the type-material of Phasmatodea housed in the following Chinese institutions: Administration of Baishuijiang Natural Reserve (ABNR), Beijing Forestry University, Beijing (BFU), China Agricultural University, Beijing (CAU), Geological Museum of China, Beijing (GMC), Inca Science Ltd., Chongqing (INCA), Institute of Zoology, Chinese Academy of Sciences, Beijing (IZCAS), Department of Biology, Nankai University, Tianjin (NKU), Northwest Sci-Tech University of Agriculture and Forestry, Shaanxi (NWAU), Institute of Zoology, Shaanxi Normal University, Xi’an (SNU), Institute of Entomology, Sun Yat-sen University (ICRI), Shanghai Institute of Entomology, Academia Sinica, Shanghai (SIES), Tianjin Natural History Museum, Tianjin (TMNH), Zhejiang Museum of Natural History, Hangzhou (ZMNH). The known distribution of each species, by means of provinces is provided as well. 14 species are shown to have been recorded from China in error, several of these based on misidentifications. The “Phasmatodea-like” fossil taxa described from the Late Jurassic Yixian Formation of North Hebei and West Liaoning are listed in a separate section. Two new generic synonyms are recognized: Arthminotus Bi, 1995 synonymised with Lopaphus Westwood, 1859 (n.syn.) and Dianphasia Chen & He, 1997 synonymised with Parasosibia Redtenbacher, 1908 (n.syn.). The genus Linocerus Gray, 1835 (Type-species: Linocerus gracilis Gray, 1835) was erroneously synonymised with the mediterranean Bacillus St. Fargeau & Audinet-Serville, 1825 and is here re-established in Phasmidae: Pachymorphinae: Gratidiini (rev. stat.). Relationship to Clonaria Stål, 1875 (= Gratidia Stål, 1875, = Paraclynopha Brunner v. Wattenwyl, 1893), Sceptropha Chenn & Seow-Choen, 2000 and Macellina Brock & Seow-Choen, 2000 is obvious.

21 species are transferred to other genera (new combinations): Asceles dilatatus Chen & He, 2004 and Asceles quadriguttatus Chen & He, 1996 to Pachyscia Redtenbacher, 1908, Arthminotus sinensis Bi, 1995 to Lopaphus Westwood, 1859, Baculum dolichocercatum Bi & Wang, 1998 and Baculum politum Chen & He, 1997 to Meduroidea Zompro, 1999, Dixippus hainanensis Chen & He, 2002, Dixippus huapingensis Bi & Li, 1991, Dixippus nigroantennatus Chen & He, 2002, Dixippus parvus Chen & He, 2002 and Entoria bobaiensis Chen, 1986 to Lonchodes Gray, 1835, Sipyloidea obvius Chen & He, 1995 to Sinophasma Günther, 1940, Paramyronides biconiferus Bi, 1993, Paramyronides leishanensis Bi, 1992, Lonchodes chinensis Brunner v. Wattenwyl, 1907, Lonchodes confucius Westwood, 1859 and Phasangia glabra Günther, 1940 to Phraortes Stål, 1875, Gratidia bituberculata Redtenbacher, 1889 and Leptynia xinganensis Chen & He, 1993 to Sceptropha Brock & Seow-Choen, 2002, Prosentoria bannaensis Chen & He, 1997 to Paraentoria Chen & He, 1997, and Mantis squeleton Olivier, 1792 to Phanocloidea Zompro, 2002. Acrophylla sichuanensis Chen & He, 2001 remains of unknown generic assignment, but is shown to be not a member of the Australian genus Acrophylla Gray, 1835. Furthermore, as Baculum Saussure, 1861 is a neotropical genus and most Old World species previously attributed to this genus are now listed in Ramulus Saussure, 1861, all Chinese species described in Baculum Saussure are consequently transferred to Ramulus Saussure. Other changes of specific placements are based on published literature and concern the following three synonymies not recognized by Chinese workers: Abrosoma Redtenbacher, 1906 (= Asceles Uvarov, 1940), Necroscia Audinet-Serville, 1838 (= Aruanoida Redtenbacher, 1908), Lopaphus Westwood, 1859 (= Paramyronides Redtenbacher, 1908). Megalophasma Bi, 1995 is transferred from Necrosciniae to Lonchodinae.

Four lectotypes are designated and three new specific synonyms revealed. A lectotype is designated for Rhamphophasma modestus Brunner von Wattenwyl, 1893, the type-species of Rhamphophasma Brunner von Wattenwyl, 1893, in order to fix this genus and species. The male paralectotype is shown to be a male of Parapachymorpha nigra Brunner von Wattenwyl, 1893, the type-species of Parapachymorpha Brunner von Wattenwyl, 1893. Clitumnus porrectus Brunner von Wattenwyl, 1907 is synonymised with Bacillus artemis Westwood, 1859 and a lectotype designated for the former (n.syn.). A lectotype is designated for Oxyartes lamellatus
Kirby, 1904 in order to fix this taxon and confirm the synonymy established by Dohrn, 1910 (= Oxyartes honestus Redtenbacher, 1908, = Oxyartes spinosissimus Carl, 1913). Paracentema stephanus Redtenbacher, 1908 is shown to have been erroneously synonymised with Neohirasea japonica (de Haan, 1842) and here synonymised with Neohirasea maerens (Brunner von Wattenwyl, 1907) (n. syn.). In order to fix this new synonymy a lectotype is designated for Paracentema stephanus Redtenbacher, 1908.

Finally, a biogeographic analysis of the Chinese phasmid fauna is presented. This includes brief background information on the topography and biogeography of China along with maps showing the seven zoogeographical subregions currently recognized as well as the 4 municipalities, 23 provinces, 5 autonomous regions and 2 special administrative regions of China. A summary of the taxonomic compilation of the fauna is provided and its relationships with neighbouring regions, of both the Palaearctic and Oriental realms, are discussed. A study is presented on the distribution of the taxa and species densities of each province / autonomous region. Recent ecological studies are summarized and list of the host plants of 42 different species attached. The pest status of certain species which have become of serious importance for agriculture in China is briefly summarized based on literary sources.

A translation of Henry, G.M. (1922) Stridulation in the leaf insect. Spolia Zeylanica, 12: 217-220. Stridulation appears to be little known among the Phasmidae. It is not mentioned in the Cambridge Natural History Museum account of this insect, and therefore the following account of a sound-producing organ in certain species of leaf-insects may be of interest.

Eurycantha insularis is a nice species that has been in culture for a long time. It has previously been referred to as Eurycantha coriacea Redtenbacher.

Records five species of Phasmida: Baculum sp., Paraclitumnus robindius Cai, Phraortes confucius (Westwood), Staelonchodes borealis Cai, Macella souchonia (Westwood).

A report of the stick-insects collected by the Comprehensive Scientific Expedition to the Hengduan Mountains Region, Academia Sinica, during 1981-1983. Six: species are dealt with, belonging to 2 families, 3 genera, in which 5 species are new to Science. The new species are: Baculum fusco-thoracicum, Baculum lineatum, Cnipsus apteris, Ramulus lanceus, Ramulus scalpratus. All the type specimens are deposited in the Institute of Zoology, Acadamia Sinica.

Because of its striking appearance, the Australian Extatosoma tiaratum tiaratum has become one of the most popular stick-insects bred in captivity. It is in established culture since 1960 and was originally introduced from North Queensland, Australia. As it is in culture for a long time already, it is necessary to introduce ‘new blood’. In 2000 a new stock was imported from the Brisbane area and is hoped to strengthen the old European cultures. Descriptions of the adults, nymphs and eggs as well as brief information on the biology and breeding of E. tiaratum tiaratum are provided.

This species from Sulawesi has been collected by Daniel Dupont in 2007 on the Peleng Island. Arnaud and Christophe Bauduin brought them into culture. The female of this species was described by Redtenbacher in 1908 and later by Frank Hennemann. The male is described for the first time. Male, female and egg are illustrated with colour photographs.

This article describes foodplants during wintertime, based on the authors’ garden. Not only the value as food for phasmids is important, also the ornamental value is promoted. This article is the first of a series of four, representing the four seasons. Includes colour photographs of nine foodplants.

Phenacephorus latifemur, a new species of the tribe Lonchodini from the island of Borneo (Phasmatodea, Diapheromeridae, Lonchodinae). *Phenacephorus latifemur*, sp.n., a stick insect from the island of Borneo (Malaysia), is described. The new species belongs to the group of *Phenacephorus cornucervi* (Brunner, 1907), characterized by the length of the mid femora, which are shorter than the combined length of the metanotum and median segment in females, and not longer than the same combined length in males. A key separating the new taxon from the most closely related species is included, as well as some comments on its biology.

The paper deals with a new species of the genus *Baculum* Saussure, collected from Tiantaistian, Zhejiang province, China. The type specimen of *Baculum tiantaiensis* n.sp. is deposited in Zhejiang Museum of Natural History.

Erratum

In the biography of Klaus Günther (Bragg, P.E. & Zompro, O. (2007) Biographies of Phasmatologists – 6. Klaus Günther. *Phasmid Studies*, 16(2): 25-33), the authors referred to Hildegard Kaufhold as Günther’s second wife (on page 25, second and fourth paragraphs). She was his first wife. The authors are grateful to Michael Schmitt for drawing their attention to this error.

Further information about Günther, including several photographs, is available at: http://www.zfmk.de/web/Forschung/Abteilungen/Entomologie/Coleoptera/Projekte/Wissenschaftsgeschichte/Klaus_Gnther/index.de.html

Phasmid Studies, 17(1): 50